Abstract
The volume of data generated worldwide is rapidly growing. Cloud computing, fog computing, and the Internet of things (IoT) technologies have been adapted to compute and process this high data volume. In coming years information technology will enable extensive developments in the field of healthcare and offer health care providers and patients broadened opportunities to enhance their healthcare experiences and services owing to heightened availability and enriched services through real-time data exchange. As promising as these technological innovations are, security issues such as data integrity and data consistency remain widely unaddressed. Therefore, it is important to engineer a solution to these issues. Developing a damage assessment and recovery control model for fog computing is critical. This paper proposes two models for using fog computing in healthcare: one for private fog computing distribution and one for public fog computing distribution. For each model, we propose a unique scheme to assess the damage caused by malicious attack, to accurately identify affected transactions and recover damaged data if needed. A transaction-dependency graph technique is used for both models to observe and monitor all transactions in the whole system. We conducted a simulation study to assess the applicability and efficacy of the proposed models. The evaluation rendered these models practicable and effective.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献