Abstract
The world has experienced a huge advancement in computing technology. People prefer outsourcing their confidential data for storage and processing in cloud computing because of the auspicious services provided by cloud service providers. As promising as this paradigm is, it creates issues, including everything from data security to time latency with data computation and delivery to end-users. In response to these challenges, the fog computing paradigm was proposed as an extension of cloud computing to overcome the time latency and communication overhead and to bring computing and storage resources close to both the ground and the end-users. However, fog computing inherits the same security and privacy challenges encountered by traditional cloud computing. This paper proposed a fine-grained data access control approach by integrating the ciphertext policy attribute-based encryption (CP-ABE) algorithm and blockchain technology to secure end-users’ data security against rogue fog nodes in case a compromised fog node is ousted. In this approach, we proposed federations of fog nodes that share the same attributes, such as services and locations. The fog federation concept minimizes the time latency and communication overhead between fog nodes and cloud servers. Furthermore, the blockchain idea and the CP-ABE algorithm integration allow for fog nodes within the same fog federation to conduct a distributed authorization process. Besides that, to address time latency and communication overhead issues, we equip each fog node with an off-chain database to store the most frequently accessed data files for a particular time, as well as an on-chain access control policies table (on-chain files tracking table) that must be protected from tampering by rogue fog nodes. As a result, the blockchain plays a critical role here because it is tamper-proof by nature. We assess our approach’s efficiency and feasibility by conducting a simulation and analyzing its security and performance.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献