Tracking and Repairing Damaged Healthcare Databases Using the Matrix

Author:

Kaddoura Sanaa1,Haraty Ramzi A.2,Zekri Ahmed1,Masud Mehedi3ORCID

Affiliation:

1. Department of Mathematics and Computer Science, Beirut Arab University, Beirut, Lebanon

2. Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon

3. Computer Science Department, Taif University, Taif, Saudi Arabia

Abstract

In a distributed mobile e-health care system, e-health service providers exchange data on the fly in response to user queries without any centralized control. Local databases in e-health service providers might be intercepted during the exchange of data and read by intruders; and malicious transactions may damage data that is highly confidential. In this case any centralized control for securing data cannot be assumed to protect confidential data. Therefore, securing health information from malicious attacks has become a major concern. Although prevention techniques are available, the history of system break-ins guarantees that there is no foolproof technique that totally eliminates security loopholes in a computer system. Hence, efficient damage assessment and recovery techniques are needed. Traditional methods require scanning the entire log from the point of attack to the end which is a slow procedure. In this paper, we present an efficient damage assessment and recovery algorithm to recover the database from malicious transactions. The algorithm is based on data dependency and uses a single matrix. The results of this work prove that our algorithm performs better than the other algorithms in both the damage assessment and the recovery stages.

Funder

American University of Beirut

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3