An Intelligent Health Care System in Fog Platform with Optimized Performance

Author:

Tripathy Subhranshu Sekhar,Rath Mamata,Tripathy Niva,Roy Diptendu SinhaORCID,Francis John Sharmila Anand,Bebortta SujitORCID

Abstract

Cloud computing delivers services through the Internet and enables the deployment of a diversity of apps to provide services to many businesses. At present, the low scalability of these cloud frameworks is their primary obstacle. As a result, they are unable to satisfy the demands of centralized computer systems, which are based on the Internet of Things (IoT). Applications such as disease surveillance and tracking and monitoring systems, which are highly latency sensitive, demand the computation of the Big Data communicated to centralized databases and from databases to cloud data centers, resulting in system performance loss. Recent concepts, such as fog and edge computing, offer novel approaches to data processing by relocating the processing power and other resources closer to the end user, thereby reducing latency and maximizing energy efficiency. Existing fog models, on the other hand, have a number of limitations and tend to prioritize either the precision of their findings or a faster response time, but not both. For the purpose of applying a healthcare solution in the real world, we developed and implemented a one-of-a-kind architecture that integrates quartet deep learning with edge computing devices. The paradigm that has been developed delivers health management as a fog service through the Internet of Things (IoT) devices and efficiently organizes the data from patients based on the requirements of the user. FogBus, a fog-enabled cloud framework, is used to measure the effectiveness of the proposed structure in regards to resource usage, network throughput, congestion, precision, and runtime. To maximize the QoS or forecast the accuracy in different fog computing settings and for different user requirements, the suggested technique can be set up to run in a number of different modes.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3