Device and Circuit Exploration of Multi-Nanosheet Transistor for Sub-3 nm Technology Node

Author:

Seon Yoongeun,Chang Jeesoo,Yoo Changhyun,Jeon Jongwook

Abstract

A multi-nanosheet field-effect transistor (mNS-FET) device was developed to maximize gate controllability while making the channel in the form of a sheet. The mNS-FET has superior gate controllability for the stacked channels; consequently, it can significantly reduce the short-channel effect (SCE); however, punch-through inevitably occurs in the bottom channel portion that is not surrounded by gates, resulting in a large leakage current. Moreover, as the size of the semiconductor device decreases to several nanometers, the influence of the parasitic resistance and parasitic capacitance increases. Therefore, it is essential to apply design–technology co-optimization, which analyzes not only the characteristics from the perspective of the device but also the performance from the circuit perspective. In this study, we used Technology Computer Aided Design (TCAD) simulation to analyze the characteristics of the device and directly fabricated a model that describes the current–voltage and gate capacitance characteristics of the device by using Berkeley short-channel insulated-gate field-effect transistor–common multi-gate (BSIM–CMG) parameters. Through this model, we completed the Simulation Program with Integrated Circuit Emphasis (SPICE) simulation for circuit analysis and analyzed it from the viewpoint of devices and circuits. When comparing the characteristics according to the presence or absence of bottom oxide by conducting the above research method, it was confirmed that subthreshold slope (SS) and drain-induced barrier lowering (DIBL) are improved, and power and performance in circuit characteristics are increased.

Funder

National Research Foundation of Korea

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3