Author:
Jeong Hwan-Seok,Cha Hyun Seok,Hwang Seong Hyun,Kwon Hyuck-In
Abstract
In this study, we examined the effects of the annealing atmosphere on the electrical performance and stability of high-mobility indium-gallium-tin oxide (IGTO) thin-film transistors (TFTs). The annealing process was performed at a temperature of 180 °C under N2, O2, or air atmosphere after the deposition of IGTO thin films by direct current magnetron sputtering. The field-effect mobility (μFE) of the N2- and O2-annealed IGTO TFTs was 26.6 cm2/V·s and 25.0 cm2/V·s, respectively; these values were higher than that of the air-annealed IGTO TFT (μFE = 23.5 cm2/V·s). Furthermore, the stability of the N2- and O2-annealed IGTO TFTs under the application of a positive bias stress (PBS) was greater than that of the air-annealed device. However, the N2-annealed IGTO TFT exhibited a larger threshold voltage shift under negative bias illumination stress (NBIS) compared with the O2- and air-annealed IGTO TFTs. The obtained results indicate that O2 gas is the most suitable environment for the heat treatment of IGTO TFTs to maximize their electrical properties and stability. The low electrical stability of the air-annealed IGTO TFT under PBS and the N2-annealed IGTO TFT under NBIS are primarily attributed to the high density of hydroxyl groups and oxygen vacancies in the channel layers, respectively.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献