Abstract
Hot carrier injection (HCI) can generate interface traps or oxide traps mainly by dissociating the Si-H or Si-O bond, thus affecting device performances such as threshold voltage and saturation current. It is one of the most significant reliability issues for devices and circuits. Particularly, the increase in heat generation per unit volume due to high integration density of advanced integrated circuits leads to a severe self-heating effect (SHE) of nanoscale field effect transistors (FETs), and low thermal conductivity of materials in nanoscale FETs further aggravates the SHE. High temperature improves the HCI reliability in the conventional MOSFET with long channels in which the energy of carriers can be relaxed. However, high temperature due to severe SHE deteriorates HCI reliability in nanoscale FETs, which is a big concern in device and circuit design. In this paper, the modeling and simulation methods of HCI in FETs are reviewed. Particularly, some recently proposed HCI models with consideration of the SHE are reviewed and discussed in detail.
Funder
National Natural Science Foundation of China
Zhejiang Provincial Natural Science Foundation
National Key Laboratory
Sichuan Science and Technology Program
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献