Investigation of thermal stress effects on subthreshold conduction in nanoscale p-FinFET from Multiphysics perspective

Author:

Duan Huali12ORCID,Li Erping12ORCID,Huang Qinyi12,Li Da12ORCID,Chu Zhufei3,Wang Jian3ORCID,Chen Wenchao12ORCID

Affiliation:

1. ZJU-UIUC Institute, International Campus, Zhejiang University 1 , Haining 314400, China

2. College of Information Science and Electronic Engineering, the Key Lab of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang Province, Zhejiang University 2 , Hangzhou 310027, China

3. Faculty of Electrical Engineering and Computer Science, Ningbo University 3 , Ningbo 315211, China

Abstract

The rising temperature due to a self-heating or thermal environment not only degrades the subthreshold performance but also intensifies thermal stress, posing a severe challenge to device performance and reliability design. The thermal stress effects on the ON-state performance of the p-type fin field-effect transistor were previously studied. However, as far as we know, how thermal stress affects its subthreshold conduction remains unclear, which is studied in this manuscript. The impact of thermal stress due to the self-heating of adjacent devices on subthreshold conduction is investigated by solving the quantum transport, thermal conduction, and force balance equations for ballistic transport and dissipative transport with phonon scattering. Then, the thermal stress effects at different ambient temperatures are further discussed and analyzed. The simulation results show that the OFF-state leakage current can be reduced by thermal stress, even up to 9.28% for the (110)/[001] device operating at an ambient temperature of 550 K, and its reduction is the comprehensive result of the thermal stress effects on the band structure, potential profile, carrier distribution, and source-to-drain tunneling. In addition, the thermal stress has no significant effects on subthreshold swing although it can change the magnitude of the subthreshold current. Moreover, the effect of thermal stress on subthreshold conduction is highly dependent on the thermal environment of the device and the crystal orientation of the channel semiconductor material.

Funder

Huimin Technology Research and Development Projects of Ningbo Municipality

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3