Abstract
A 3GS/s 12-bit current-steering digital-to-analog converter (DAC) fabricated in 55 nm complementary metal–oxide–semiconductor (CMOS) technology has been presented. A partial randomization dynamic element matching (PRDEM) method based on switching sequence optimization is proposed to mitigate the mismatch effect and suppress the harmonic distortion with low hardware complexity. In the switching current cell, the cascode structure together with “always-ON” small current sources are used to keep the output impedance high and uniform. A compact layout of the switching current array is carefully designed, featuring short wires routing and small parasitic capacitance. According to the measured results at 3GS/s, this DAC demonstrates a spurious-free dynamic range (SFDR) of 74.64 dBc at low frequency and 50 dBc at 1.5 GHz output. The chip occupies an active area of 0.2 × 0.48 mm2 and consumes a total power of 495 mW.
Funder
National Natural Science Fund of China
National Key Research and Development Program of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献