Design of a 16–bit 500 MS s–1 SAR-ADC at 45 nm for low power and high frequency applications

Author:

Singh Tejender,Tripathi Suman LataORCID,Mahmud MuftiORCID

Abstract

Abstract This study gives a thorough analysis of the performance of a 45 nm CMOS process-designed 16-bit 500 MS/s successive approximation register analog-to-digital converter (SAR-ADC). 16-bit R-2R DAC double-tail dynamic latch, Widlar current method, variable body-biasing technique, sample and hold block, 16-bit SAR, and 16-bit latch are used to design proposed SAR-ADC block. The SAR-ADC design and simulations were carried out using Cadence Virtuoso software. This powerful electronic design automation (EDA) tool facilitated the design, layout, and simulation of the ADC, ensuring a comprehensive analysis of its performance characteristics. MATLAB was used for post-simulation data analysis, processing, and visualization. The proposed SAR-ADC is compared with few existing examples listed as ADS8881, LTC2380–16, ADS8344, LTC2368, and MAX11156 on the performance metrics including signal-to-noise ratio (SNR), figure of merit (FOM), total harmonic distortion (THD), resolution, delay, power consumption and figure of Merit (FOM). This work is highlighting different aspects of the suggested architecture and demonstrates how it outperforms benchmark of ADCs in terms of power usage, SNR, THD, and FOM. A SAR-ADC attains a power consumption of 39.2 μW while operating at sampling frequency of 500 MS s–1 at supply voltage of 1 V. The results provide fresh perspectives for potential improvements in existing work in terms of reduction in power consumption and high-speed ADC at 16-bit resolution and also Jitter is scrutinized across various stages of the SAR-ADC. The proposed low power, high speed and high-resolution SAR ADC is targeted for high-quality analog-to-digital signal conversion useful in industrial automation systems, medical devices, IoT and audio processing modules.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3