Deep Convolutional Generative Adversarial Networks-Based Data Augmentation Method for Classifying Class-Imbalanced Defect Patterns in Wafer Bin Map

Author:

Park Sangwoo1ORCID,You Cheolwoo2ORCID

Affiliation:

1. C4I R&D Center, LIG Nex1 Co., Ltd., Seongnam 13488, Republic of Korea

2. Department of Information and Communications Engineering, Myongji University, Yongin 17058, Republic of Korea

Abstract

In the semiconductor industry, achieving a high production yield is a very important issue. Wafer bin maps (WBMs) provide critical information for identifying anomalies in the manufacturing process. A WBM forms a certain defect pattern according to the error occurring during the process, and by accurately classifying the defect pattern existing in the WBM, the root causes of the anomalies that have occurred during the process can be inferred. Therefore, WBM defect pattern recognition and classification tasks are important for improving yield. In this paper, we propose a deep convolutional generative adversarial network (DCGAN)-based data augmentation method to improve the accuracy of a convolutional neural network (CNN)-based defect pattern classifier in the presence of extremely imbalanced data. The proposed method forms various defect patterns compared to the data augmentation method by using a convolutional autoencoder (CAE), and the formed defect patterns are classified into the same pattern as the original pattern through a CNN-based defect pattern classifier. Here, we introduce a new quantitative index called PGI to compare the effectiveness of the augmented models, and propose a masking process to refine the augmented images. The proposed method was tested using the WM-811k dataset. The proposed method helps to improve the classification performance of the pattern classifier by effectively solving the data imbalance issue compared to the CAE-based augmentation method. The experimental results showed that the proposed method improved the accuracy of each defect pattern by about 5.31% on average compared to the CAE-based augmentation method.

Funder

the National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3