Abstract
Dental implants are crucial therapeutic devices for successful substitution of missing teeth. Failure cases are mainly pathogen-associated events, allowing clinical progression toward peri-mucositis or peri-implantitis. The aim of this study was to compare the performance of two mechanical decontamination systems, Nickel-Titanium brush (Brush) and Air-Polishing system with 40 µm bicarbonate powder (BIC-40), by means of a novel bioluminescence-based model that measures microbial load in real time. Briefly, 30 disks were contaminated using the bioluminescent Pseudomonas aeruginosa strain (BLI-P. aeruginosa), treated with Brush (30 s rounds, for 90 s) or BIC-40 (30 s, at 5 mm distance) procedure, and then assessed for microbial load, particularly, biofilm removal and re-growth. Our results showed that Brush and BIC-40 treatment reduced microbial load of about 1 and more than 3 logs, respectively. Furthermore, microbial re-growth onto Brush-treated disks rapidly occurred, while BIC-40-treated disks were slowly recolonized, reaching levels of microbial load consistently below those observed with the controls. In conclusion, we provide evidence on the good performance of BIC-40 as titanium device-decontamination system, the clinical implication for such findings will be discussed.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献