Advanced Optimization of Surface Characteristics and Material Removal Rate for Biocompatible Ti6Al4V Using WEDM Process with BBD and NSGA II

Author:

Nagadeepan Anbazhagan1,Jayaprakash Govindarajalu2,Senthilkumar Vagheesan1ORCID

Affiliation:

1. Department of Mechanical Engineering, SRM TRP Engineering College, Trichy 621105, Tamilnadu, India

2. Department of Mechanical Engineering, Saranathan College of Engineering, Trichy 620012, Tamilnadu, India

Abstract

Machining titanium alloy (Ti6Al4V) used in orthopedic implants via conventional metal cutting processes is challenging due to excessive cutting forces, low surface integrity, and tool wear. To overcome these difficulties and ensure high-quality products, various industries employ wire electrical discharge machining (WEDM) for precise machining of intricate shapes in titanium alloy. The objective is to make WEDM machining parameters as efficient as possible for machining the biocompatible alloy Ti6Al4Vusing Box–Behnken design (BBD) and nondominated sorting genetic algorithm II (NSGA II). A quadratic mathematical model is created to represent the productivity and the quality factor (MRR and surface roughness) in terms of varying input parameters, such as pulse active (Ton) time, pulse inactive (Toff) time, peak amplitude (A) current, and applied servo (V) voltage. The established regression models and related prediction plots provide a reliable approach for predicting how the process variables affect the two responses, namely, MRR and SR. The effects of four process variables on both the responses were examined, and the findings revealed that the pulse duration and voltage have a major influence on the rate at which material is removed (MRR), whereas the pulse duration influences quality (SR). The tradeoff between MRR and SR, when significant process factors are included, emphasizes the need for a reliable multi-objective optimization method. The intelligent metaheuristic optimization method named nondominated sorting genetic algorithm II (NSGA II) was utilized to provide pareto optimum solutions in order to achieve high material removal rate (MRR) and low surface roughness (SR).

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3