A Game-Theory-Based Approach to Modeling Lane-Changing Interactions on Highway On-Ramps: Considering the Bounded Rationality of Drivers

Author:

Chen Weihan,Ren Gang,Cao Qi,Song JianhuaORCID,Liu Yikun,Dong ChangyinORCID

Abstract

In highway on-ramp sections, the conflictual interactions between a subject vehicle (merging vehicle) in the acceleration lane and a following vehicle (lagging vehicle) in the adjacent mainline can lead to traffic congestion, go–stop oscillations, and serious safety hazards. Human drivers combine their previous lane-changing experience and their perception of surrounding traffic conditions to decide whether to merge. However, the decisions that they make are not always optimal in specific traffic scenarios due to fuzzy perception and misjudgment. That is, they make lane-changing decisions in a bounded rational way. In this paper, a game-theory-based approach is used to model the interactive behavior of mandatory lane-changing in a highway on-ramp section. The model comprehensively considers vehicle interactions and the bounded rationality of drivers by modeling lane-changing behavior on on-ramps as a two-person non-zero-sum non-cooperative game with incomplete information. In addition, the Logit QRE is used to explain the bounded rationality of drivers. In order to estimate the parameters, a bi-level programming framework is built. Vehicle trajectory data from NGSIM and an unmanned aerial vehicle survey were used for model calibration and validation. The validation results were rigorously evaluated by using various performance indicators, such as the mean absolute error, root mean square error, detection rate, and false-alarm rate. It can be seen that the proposed game theory-based model was able to effectively predict merging and yielding interactions with a high degree of accuracy.

Funder

National Key Research and Development 381 Program of China under Grant

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3