Landsat Satellites Observed Dynamics of Snowline Altitude at the End of the Melting Season, Himalayas, 1991–2022

Author:

Wang Jingwen1,Tang Zhiguang1,Deng Gang2ORCID,Hu Guojie3,You Yuanhong4,Zhao Yancheng1

Affiliation:

1. National-Local Joint Engineering Laboratory of Geo-Spatial Information Technology, Hunan University of Science and Technology, Xiangtan 411201, China

2. School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China

3. State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

4. School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China

Abstract

Studying the dynamics of snowline altitude at the end of the melting season (SLA-EMS) is beneficial in predicting future trends of glaciers and non-seasonal snow cover and in comprehending regional and global climate change. This study investigates the spatiotemporal variation characteristics of SLA-EMS in nine glacier areas of the Himalayas, utilizing Landsat images from 1991 to 2022. The potential correlations between SLA-EMS, alterations in temperature, and variations in precipitation across the Himalayas region glacier are also being analyzed. The results obtained are summarized below: (1) the Landsat-extracted SLA-EMS exhibits a strong agreement with the minimum snow coverage at the end of the melting season derived from Sentinel-2, achieving an overall accuracy (OA) of 92.6% and a kappa coefficient of 0.85. The SLA-EMS can be accurately obtained by using this model. (2) In the last 30 years, the SLA-EMS in the study areas showed an upward trend, with the rising rate ranging from 0.4 m·a−1 to 9.4 m·a−1. Among them, the SLA-EMS of Longbasaba rose fastest, and that of Namunani rose slowest. (3) The SLA-EMS in different regions of the Himalayas in a W-E direction have different sensitivity to precipitation and temperature. However, almost all of them show a positive correlation with temperature and a negative correlation with precipitation.

Funder

the Science and Technology Innovation Program of Hunan Province, China

the National Natural Science Foundation of China

the State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3