A Comparative Analysis of Machine Learning Techniques for National Glacier Mapping: Evaluating Performance through Spatial Cross-Validation in Perú

Author:

Bueno Marcelo1ORCID,Macera Briggitte1,Montoya Nilton1

Affiliation:

1. Departamento Académico de Agricultura, Universidad Nacional de San Antonio Abad del Cusco (UNSAAC), Cusco 08000, Peru

Abstract

Accurate glacier mapping is crucial for assessing future water security in Andean ecosystems. Traditional accuracy assessment may be biased due to overlooking spatial autocorrelation during map validation. In recent years, spatial cross-validation (CV) strategies have been proposed in environmental and ecological modeling to reduce bias in predictive accuracy. In this study, we demonstrate the influence of spatial autocorrelation on the accuracy assessment of glacier surface predictive models. This is achieved by comparing the performance of several widely used machine learning algorithms including the gradient-boosting machines (GBM), k-nearest neighbors (KNN), random forest (RF), and logistic regression (LR) for mapping nine main Peruvian glacier regions. Spatial and non-spatial cross-validation methods were used to evaluate the model’s classification errors in terms of the Matthews correlation coefficient. Performance differences of up to 18% were found between bias-reduced (spatial) and overoptimistic (non-spatial) cross-validation results. Regarding only spatial CV, the k-nearest neighbors were the overall best model across Huallanca (0.90), Huayhuasha (0.78), Huaytapallana (0.96), Raura (0.93), Urubamba (0.96), Vilcabamba (0.93), and Vilcanota (0.92) regions, consistently demonstrating the highest performance followed by logistic regression at Blanca (0.95) and Central (0.97) regions. Our validation approach, accounting for spatial characteristics, provides valuable insights for glacier mapping studies and future efforts on glacier retreat monitoring. Incorporating this approach improves the reliability of glacier mapping, guiding future national-level initiatives.

Funder

National Council for Science, Technology, and Technological Innovation (CONCYTEC) of Peru and the Newton Fund of England

CONCYTEC Peru and UKRI

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3