Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes
-
Published:2013-01-23
Issue:1
Volume:7
Page:103-118
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Salzmann N.,Huggel C.,Rohrer M.,Silverio W.,Mark B. G.,Burns P.,Portocarrero C.
Abstract
Abstract. The role of glaciers as temporal water reservoirs is particularly pronounced in the (outer) tropics because of the very distinct wet/dry seasons. Rapid glacier retreat caused by climatic changes is thus a major concern, and decision makers demand urgently for regional/local glacier evolution trends, ice mass estimates and runoff assessments. However, in remote mountain areas, spatial and temporal data coverage is typically very scarce and this is further complicated by a high spatial and temporal variability in regions with complex topography. Here, we present an approach on how to deal with these constraints. For the Cordillera Vilcanota (southern Peruvian Andes), which is the second largest glacierized cordillera in Peru (after the Cordillera Blanca) and also comprises the Quelccaya Ice Cap, we assimilate a comprehensive multi-decadal collection of available glacier and climate data from multiple sources (satellite images, meteorological station data and climate reanalysis), and analyze them for respective changes in glacier area and volume and related trends in air temperature, precipitation and in a more general manner for specific humidity. While we found only marginal glacier changes between 1962 and 1985, there has been a massive ice loss since 1985 (about 30% of area and about 45% of volume). These high numbers corroborate studies from other glacierized cordilleras in Peru. The climate data show overall a moderate increase in air temperature, mostly weak and not significant trends for precipitation sums and probably cannot in full explain the observed substantial ice loss. Therefore, the likely increase of specific humidity in the upper troposphere, where the glaciers are located, is further discussed and we conclude that it played a major role in the observed massive ice loss of the Cordillera Vilcanota over the past decades.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference75 articles.
1. Albert, T. H.: Evaluation of remote sensing techniques for ice-area classification applied to the tropical Quelccaya ice cap, Peru, Polar Geography, 26, 210–226, 2002. 2. Ames, A., Dolores, S., Valverde, A., Evangelista, C., Javier, D., Ganwini, W., and Zuniga, J.: Glacier inventory of Peru, Part I, Hidrandina S.A. Huaraz, Peru, 1998. 3. ASTER Validation Team: ASTER global DEM validation summary report, Validation Team: METI/ERSDAC, NASA/LPDAAC, USGS/EROS, 2009: ASTER Global DEM Validation, Summary Report, available at: https://lpdaac.usgs.gov, 2009. 4. Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R., Schöner, W., Ungersböck, M., Matulla, C., Briffa, K., Jones, P., Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre, O., Moisselin,. J-M., Begert, M., Müller-Westermeier, G., Kveton, V., Bochnicek, O., Stastny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar, T., Dolinar, M., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., and Nieplova, E.: HISTALP – historical instrumental climatological surface time series of the Greater Alpine Region, Int. J. Clim., 27, 17–46, 2007. 5. Bahr, D. B. Meier, M. F., and Peckham, S. D.: The physical basis of glacier volume-area scaling, J. Geophys. Res, 102, 355–362, 1997.
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|