Spatiotemporal Variations of Glacier Mass Balance in the Tomur Peak Region Based on Multi-Source Altimetry Remote Sensing Data

Author:

Cheng Chaoying1,Du Weibing1234ORCID,Li Junli1234ORCID,Bao Anming1234,Ge Wen567,Wang Shuangting167,Ma Dandan1,Pan Yaming1

Affiliation:

1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China

2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

3. China-Pakistan Joint Research Center on Earth Sciences, CAS-HEC, Islamabad 45320, Pakistan

4. Xinjiang Key Laboratory of Remote Sensing and Geographic Information System Application, Urumqi 830011, China

5. Institute of Surveying and Mapping, Information Engineering University, Zhengzhou 450001, China

6. Collaborative Innovation Center of Geo-Information Technology for Smart Central Plains, Zhengzhou 450000, China

7. Key Laboratory of Spatiotemporal Perception and Intelligent Processing, Ministry of Natural Resources, Zhengzhou 450000, China

Abstract

Alpine glaciers are sensitive indicators of regional climate change, which can affect regional ecological stability and social development. Variations in glacier mass balance (GMB) are an important parameter in studying glacier change. In this study, data from the Ice, Cloud, and Land Elevation Satellite-1 (ICESat-1), the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2), and CryoSat-2 (Ku-band) were combined, and high-resolution ALOS DEM was employed to denoise. After that, the polynomial fitting method was used to analyze the characteristics of glacier surface elevation (GSE) variations from 2003–2020 in the Tomur Peak Region of the Central Asian Tianshan Mountains and the regional GMB was calculated. Research results showed that: (1) From 2003–2020, the GSE of the Tomur Peak Region had an overall −8.95 ± 4.48 m variation, the average rate of which was −0.53 ± 0.26 m/yr (/yr is /year). Overall, elevations of most glaciers in the Tomur Peak Region had downward trends, with a rate of change of −0.5 to 0 m/yr. The fastest rate of elevation decline in the Koxkar Glacier Tongue was −1.5 m/yr. The elevation of some altimetric points in the Eastern Tomur Peak Region showed a rising state, with a maximum rate of variation of 1.0 m/yr. (2) From 2003–2020, the average GMB in the Tomur Peak Region was −1.51 ± 0.04 Gt/yr. In the region of elevation below 4000 m, small glaciers dominated, with a GMB of −0.61 ± 0.04 Gt/yr. With increasing elevation, the melting rate of glaciers gradually slowed down, but overall, the mass balance remained in a state of decline. (3) Climate was the main driving factor of GMB change in the study area. From 2003–2020, in the Tomur Peak Region, the average annual temperature continued to increase at a rate of 0.04 ± 0.02 °C/yr, and this was the main influencing factor for the negative GMB in the Tomur Peak Region. In the same period, the annual precipitation showed a rising trend with a linear variation rate of 0.12 ± 0.06 mm/yr, and the rising precipitation was the influencing factor for the gradually slowing change in the GMB in the study area.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3