Abstract
Vehicle speed prediction can obtain the future driving status of a vehicle in advance, which helps to make better decisions for energy management strategies. We propose a novel deep learning neural network architecture for vehicle speed prediction, called VSNet, by combining convolutional neural network (CNN) and long-short term memory network (LSTM). VSNet adopts a fake image composed of 15 vehicle signals in the past 15 s as model input to predict the vehicle speed in the next 5 s. Different from the traditional series or parallel structure, VSNet is structured with CNN and LSTM in series and then in parallel with two other CNNs of different convolutional kernel sizes. The unique architecture allows for better fitting of highly nonlinear relationships. The prediction performance of VSNet is first examined. The prediction results show a RMSE range of 0.519–2.681 and a R2 range of 0.997–0.929 for the future 5 s. Finally, an energy management strategy combined with VSNet and model predictive control (MPC) is simulated. The equivalent fuel consumption of the simulation increases by only 4.74% compared with DP-based energy management strategy and decreased by 2.82% compared with the speed prediction method with low accuracy.
Funder
the Science and Technology Planning Project in Changzhou
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献