Energy Consumption Estimation Method of Battery Electric Buses Based on Real-World Driving Data

Author:

Wang Peng1,Liu Qiao2ORCID,Xu Nan2ORCID,Ou Yang1,Wang Yi1,Meng Zaiqiang1,Liu Ning1,Fu Jiyao1,Li Jincheng2

Affiliation:

1. China Automotive Engineering Research Institute Co., Ltd., Chongqing 401122, China

2. National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China

Abstract

The estimation of energy consumption under real-world driving conditions is a prerequisite for optimizing bus scheduling and meeting the requirements of route operation, thereby promoting the large-scale application of battery electric buses. However, the limitation of data accuracy and the uncertainty of many factors, such as weather conditions, traffic conditions, and driving styles, etc. make accurate energy consumption estimation complicated. In response to these challenges, a new method for estimating the energy consumption of battery electric buses (BEBs) is proposed in this research. This method estimates the speed profiles of different driving styles and the energy consumption extremes using real-world driving data. First, this research provides the constraints on speed formed by environmental factors including weather conditions, route characteristics, and traffic characteristics. On this basis, there are two levels of estimation for energy consumption. The first level classifies different driving styles and constructs the corresponding speed profiles with the time interval (10 s), the same as real-world driving data. The second level further constructs the speed profiles with the time interval of 1 s by filling in the first-level speed profiles and estimating the energy consumption extremes. Finally, the estimated maximum and minimum value of energy consumption were compared with the true value and the results showed that the real energy consumption did not exceed the extremes we estimated, which proves the method we proposed is reasonable and useful. Therefore, this research can provide a theoretical foundation for the deployment of battery electric buses.

Funder

project of the CAERI Automotive Index “Research on key technologies based on automobile health evaluation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3