Physics-Based Rate of the Penetration Prediction Model for Fixed Cutter Drill Bits

Author:

de Moura Jeronimo1,Yang Jianming1,Butt Stephen D.1

Affiliation:

1. Drilling Technology Laboratory, Faculty of Engineering & Applied Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada

Abstract

Abstract The drilling process is one of the most important and expensive aspects of the oil and gas industry. Its economic feasibility is a direct relation to good planning that has high dependence on an accurate prediction of the rate of penetration (ROP). Knowledge of drilling performance through ROP prediction models is a vital tool in the development of a consistent drilling plan and allows industry players to anticipate issues that may occur during a drilling operation. Additionally, as some drilling parameters (such as rotary speed, weight on bit (WOB), and drilling fluid flowrate), an accurate prediction of the ROP is crucial to the optimization of drilling performance and contributes to reducing drilling costs. Several approaches to predict the drilling performance have been tried with varying degrees of success, complexity, and accuracy. In this paper, a review of the history of drilling performance prediction is conducted with emphasis on rotary drilling with fixed cutter drill bits. The approaches are grouped into two categories: physics-based and data-driven models. The paper’s main objective is to present an accurate model to predict the drilling performance of fixed cutter drill bits including the founder point location. This model was based on a physics-based approach due to its low complexity and good accuracy. This development is based on a quantitative analysis of drilling performance data produced by laboratory experiments. Additionally, the validation and applicability tests for the proposed model are discussed based on drill-off tests (DOTs) and field trials in several different drilling scenarios. The proposed model presented high accuracy to predict the fixed cutter drill bit drilling performance in the 27 different drilling scenarios which were analyzed in this paper.

Funder

Mitacs

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference35 articles.

1. Case Study: Reactive Torque Failure Prevention;Pettit,2018

2. Analysis of Rate of Penetration (ROP) Prediction in Drilling Using Physics-Based and Data-Driven Models;Hegde;J. Petrol. Sci. Eng.,2017

3. Influence of High Velocity Jet on Drilling Performance of PDC Bit Under Pressurized Condition;Khorshidian,2014

4. The “Perfect-Cleaning” Theory of Rotary Drilling;Maurer,1962

5. Open Pit Drilling—Factors Influence Drilling Rates;Bauer,1967

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3