A Hybrid ARIMA-LSTM Model for Short-Term Vehicle Speed Prediction

Author:

Wang Wei1,Ma Bin12ORCID,Guo Xing3,Chen Yong12,Xu Yonghong12ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University, Beijing 100192, China

2. Beijing Laboratory for New Energy Vehicles, Beijing 100192, China

3. School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Short vehicle speed prediction is important in predictive energy management strategies, and the accuracy of the prediction is beneficial for energy-saving performance. However, the nonlinear feature of the speed series hinders the improvement of prediction accuracy. In this study, a novel hybrid model that combines an autoregressive integrated moving average (ARIMA) and a long short-term memory (LSTM) model is proposed to handle the nonlinear part efficiently. Generally, the ARIMA component filters out linear trends from the speed series data, and the parameters of the ARIMA are determined with the analysis. Then the LSTM handles the residual normalized nonlinear items, which is the residual of ARIMA. Finally, the two parts of the prediction results are superimposed to obtain the final speed prediction results. To assess the performance of the hybrid model (ARIMA-LSTM), two tested driving cycles and two typical driving scenarios are subjected to rigorous analysis. The results demonstrate that the combined prediction model outperforms individual methods ARIMA and LSTM in dealing with complex, nonlinear variations, and exhibits significantly improved performance metrics, including root mean square error (RMSE), mean absolute error (MAE), and mean percentage error (MAPE). The proposed hybrid model provides a further improvement for the accuracy prediction of vehicle traveling processes.

Funder

National Natural Science Foundation of Beijing

National Natural Science Foundation of China

Open Research Fund of the Public Security Behavioral Science Laboratory

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3