Combined Prediction for Vehicle Speed with Fixed Route

Author:

Zhang LipengORCID,Liu Wei,Qi Bingnan

Abstract

AbstractAchieving accurate speed prediction provides the most critical support parameter for high-level energy management of plug-in hybrid electric vehicles. Nowadays, people often drive a vehicle on fixed routes in their daily travels and accurate speed predictions of these routes are possible with random prediction and machine learning, but the prediction accuracy still needs to be improved. The prediction accuracy of traditional prediction algorithms is difficult to further improve after reaching a certain accuracy; problems, such as over fitting, occur in the process of improving prediction accuracy. The combined prediction model proposed in this paper can abandon the transitional dependence on a single prediction. By combining the two prediction algorithms, the fusion of prediction performance is achieved, the limit of the single prediction performance is crossed, and the goal of improving vehicle speed prediction performance is achieved. In this paper, an extraction method suitable for fixed route vehicle speed is designed. The application of Markov and back propagation (BP) neural network in predictions is introduced. Three new combined prediction methods, all named Markov and BP Neural Network (MBNN) combined prediction algorithm, are proposed, which make full use of the advantages of Markov and BP neural network algorithms. Finally, the comparison among the prediction methods has been carried out. The results show that the three MBNN models have improved by about 19%, 28%, and 29% compared with the Markov prediction model, which has better performance in the single prediction models. Overall, the MBNN combined prediction models can improve the prediction accuracy by 25.3% on average, which provides important support for the possible optimization of plug-in hybrid electric vehicle energy consumption.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3