Efficient Group K Nearest-Neighbor Spatial Query Processing in Apache Spark

Author:

Moutafis PanagiotisORCID,Mavrommatis GeorgeORCID,Vassilakopoulos MichaelORCID,Corral AntonioORCID

Abstract

Aiming at the problem of spatial query processing in distributed computing systems, the design and implementation of new distributed spatial query algorithms is a current challenge. Apache Spark is a memory-based framework suitable for real-time and batch processing. Spark-based systems allow users to work on distributed in-memory data, without worrying about the data distribution mechanism and fault-tolerance. Given two datasets of points (called Query and Training), the group K nearest-neighbor (GKNN) query retrieves (K) points of the Training with the smallest sum of distances to every point of the Query. This spatial query has been actively studied in centralized environments and several performance improving techniques and pruning heuristics have been also proposed, while, a distributed algorithm in Apache Hadoop was recently proposed by our team. Since, in general, Apache Hadoop exhibits lower performance than Spark, in this paper, we present the first distributed GKNN query algorithm in Apache Spark and compare it against the one in Apache Hadoop. This algorithm incorporates programming features and facilities that are specific to Apache Spark. Moreover, techniques that improve performance and are applicable in Apache Spark are also incorporated. The results of an extensive set of experiments with real-world spatial datasets are presented, demonstrating that our Apache Spark GKNN solution, with its improvements, is efficient and a clear winner in comparison to processing this query in Apache Hadoop.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3