A PID-Based kNN Query Processing Algorithm for Spatial Data

Author:

Qiao BaiyouORCID,Ma Ling,Chen Linlin,Hu Bing

Abstract

As a popular spatial operation, the k-Nearest Neighbors (kNN) query is widely used in various spatial application systems. How to efficiently process a kNN query on spatial big data has always been an important research topic in the field of spatial data management. The centralized solutions are not suitable for spatial big data due to their poor scalability, while the existing distributed solutions are not efficient enough to meet the high real-time requirements of some spatial applications. Therefore, we introduce the Proportional Integral Derivative (PID) control technology into kNN query processing and propose a PID-based kNN query processing algorithm (PIDKNN) for spatial big data based on Spark. In this algorithm, the whole data space is divided into grid cells of the same size using the grid partition method, and the grid-based index is constructed. On this basis, the grid-based density peak clustering algorithm is used to cluster spatial data, and the corresponding PID parameters are set for each cluster. When performing kNN queries, the PID algorithm is used to estimate the radius growth step size of kNN queries, thereby realizing kNN query processing with a variable query radius growth step based on a feedback mechanism, which greatly improves the efficiency of kNN query processing. A series of experimental results show that the PIDKNN algorithm has good performance and scalability and is superior to the existing parallel kNN query processing methods.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. Efficient Parallel kNN Joins for Large Data in MapReduce;Chi;Proceedings of the International Conference on Extending Database Technology,2012

2. Improving the Performance of kNN in the MapReduce Framework Using Locality Sensitive Hashing

3. Research on Spatial Data Index and kNN Query Technology under Big Data;Dong;M.D. Thesis,2013

4. Geospark: A Cluster Computing Framework for Processing Large-Scale Spatial Data;Yu;Proceedings of the SIGSPATIAL International Conference on Advances in Geographic Information Systems,2015

5. Spark sql: Relational Data Processing in Spark;Armbrust;Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD),2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3