Big Data Clustering Using Chemical Reaction Optimization Technique: A Computational Symmetry Paradigm for Location-Aware Decision Support in Geospatial Query Processing

Author:

Neamah Ali Fahem,Ibrahim Hussein Khudhur,Darwish Saad MohamedORCID,Hassen Oday Ali

Abstract

The emergence of geospatial big data has opened up new avenues for identifying urban environments. Although both geographic information systems (GIS) and expert systems (ES) have been useful in resolving geographical decision issues, they are not without their own shortcomings. The combination of GIS and ES has gained popularity due to the necessity of boosting the effectiveness of these tools in resolving very difficult spatial decision-making problems. The clustering method generates the functional effects necessary to apply spatial analysis techniques. In a symmetric clustering system, two or more nodes run applications and monitor each other simultaneously. This system is more efficient than an asymmetric system since it utilizes all available hardware and does not maintain a node in a hot standby state. However, it is still a major issue to figure out how to expand and speed up clustering algorithms without sacrificing efficiency. The work presented in this paper introduces an optimized hierarchical distributed k-medoid symmetric clustering algorithm for big data spatial query processing. To increase the k-medoid method’s efficiency and create more precise clusters, a hybrid approach combining the k-medoid and Chemical Reaction Optimization (CRO) techniques is presented. CRO is used in this approach to broaden the scope of the optimal medoid and improve clustering by obtaining more accurate data. The suggested paradigm solves the current technique’s issue of predicting the accurate clusters’ number. The suggested approach includes two phases: in the first phase, the local clusters are built using Apache Spark’s parallelism paradigm based on their portion of the whole dataset. In the second phase, the local clusters are merged to create condensed and reliable final clusters. The suggested approach condenses the data provided during aggregation and creates the ideal clusters’ number automatically based on the dataset’s structures. The suggested approach is robust and delivers high-quality results for spatial query analysis, as shown by experimental results. The proposed model reduces average query latency by 23%.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference52 articles.

1. Geospatial big data: New paradigm of remote sensing applications;Deng;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2019

2. Geospatial big data handling theory and methods: A review and research challenges;Li;ISPRS J. Photogramm. Remote Sens.,2016

3. Li, Z. (2020). High Performance Computing for Geospatial Applications, Springer.

4. Multisource Aggregation Search and Scheduling for Remote Sensing Data Cluster;Wang;IEEE Geosci. Remote Sens. Lett.,2019

5. A novel method for parallel indexing of real time geospatial big data generated by IoT devices;Limkar;Future Gener. Comput. Syst.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3