Abstract
Realizing the rapid measurement of coal moisture content (MC) is of great significance. However, existing measurement methods are time-consuming and damage the original properties of the samples. To address these concerns, a coal MC intelligent measurement system is designed in this study that integrates microwave spectrum analysis and the distance-weighted k-nearest neighbor (DW-kNN) algorithm to realize rapid and non-destructive measurement of coal MC. Specifically, the measurement system is built using portable microwave analysis equipment, which can efficiently collect the microwave signals of coal. To improve the cleanliness of modeling data, an iterative clipping method based on Mahalanobis distance (MD-ICM) is used to detect and eliminate outliers. Based on multiple microwave frequency bands, various machine learning methods are evaluated, and it is found that coal MC measurement using broad frequency signals of 8.05–12.01 GHz yields the best results. Experiments are also carried out on coals from different regions to examine the regional robustness of the proposed method. The results of on-site testing with 27 additional samples show that the method based on the combination of microwave spectrum analysis and DW-kNN has a potential application prospect in the rapid measurement of coal MC.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献