A Novel Query Method for Spatial Database Based on Improved K-Nearest Neighbor Algorithm

Author:

Xia Huili1,Xue Feng1

Affiliation:

1. College of Computer and Artificial Intelligence, Zhengzhou University of Economics and Business, China

Abstract

Spatial database is a spatial information database and is the core component of geographic information systems (GIS). Aiming at the problem that time complexity of k-nearest neighbor (kNN) querying algorithms are proportionate to scale of training samples, an efficient query method for spatial database based on the Spark framework and the reversed k-nearest neighbor (RkNN) is proposed. Firstly, based on the Spark framework, a two-layer indexing structure based on grid and Voronoi diagram is constructed, and an efficient filtering and a refining processing algorithm are proposed. Secondly, the filtering step of proposed algorithm is used to obtain the candidates, and the refining step is used to remove the candidates. Finally, the candidate sets from different regions are merged to get the final result. Results of experiments on real-world datasets validate that the proposed method has better query performance and better stability and significantly improves the processing speed.

Publisher

IGI Global

Subject

Modeling and Simulation,General Computer Science

Reference30 articles.

1. Analysis of spatial database performance for location intelligence.;S. S. K.Baharin;Journal of Advanced Computing Technology and Application,2020

2. Geospatial Data Management Research: Progress and Future Directions

3. Fast neighbor search by using revised k-d tree

4. Review of GIS-Based Applications for Mining: Planning, Operation, and Environmental Management

5. A review of various k-nearest neighbor query processing techniques.;S.Dhanabal;International Journal of Computer Applications,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ship Track Prediction based PSO-LSTM;2023 5th International Conference on Frontiers Technology of Information and Computer (ICFTIC);2023-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3