Detecting Incremental Frequent Subgraph Patterns in IoT Environments

Author:

Bok Kyoungsoo,Jeong Jaeyun,Choi Dojin,Yoo JaesooORCID

Abstract

As graph stream data are continuously generated in Internet of Things (IoT) environments, many studies on the detection and analysis of changes in graphs have been conducted. In this paper, we propose a method that incrementally detects frequent subgraph patterns by using frequent subgraph pattern information generated in previous sliding window. To reduce the computation cost for subgraph patterns that occur consecutively in a graph stream, the proposed method determines whether subgraph patterns occur within a sliding window. In addition, subgraph patterns that are more meaningful can be detected by recognizing only the patterns that are connected to each other via edges as one pattern. In order to prove the superiority of the proposed method, various performance evaluations were conducted.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph Stream Compression Scheme Based on Pattern Dictionary Using Provenance;Applied Sciences;2024-05-25

2. Distributed Subgraph Query Processing Using Filtering Scores on Spark;Electronics;2023-08-29

3. Cost Model Based Incremental Processing in Dynamic Graphs;Electronics;2022-02-21

4. VTA-IH: A Fog-based Digital Forensics Framework;2020 6th International Conference on Science in Information Technology (ICSITech);2020-10-21

5. In-Memory Caching for Enhancing Subgraph Accessibility;Applied Sciences;2020-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3