Abstract
Graphs have been utilized in various fields because of the development of social media and mobile devices. Various studies have also been conducted on caching techniques to reduce input and output costs when processing a large amount of graph data. In this paper, we propose a two-level caching scheme that considers the past usage pattern of subgraphs and graph connectivity, which are features of graph topology. The proposed caching is divided into a used cache and a prefetched cache to manage previously used subgraphs and subgraphs that will be used in the future. When the memory is full, a strategy that replaces a subgraph inside the memory with a new subgraph is needed. Subgraphs in the used cache are managed by a time-to-live (TTL) value, and subgraphs with a low TTL value are targeted for replacement. Subgraphs in the prefetched cache are managed by the queue structure. Thus, first-in subgraphs are targeted for replacement as a priority. When a cache hit occurs in the prefetched cache, the subgraphs are migrated and managed in the used cache. As a result of the performance evaluation, the proposed scheme takes into account subgraph usage patterns and graph connectivity, thus improving cache hit rates and data access speeds compared to conventional techniques. The proposed scheme can quickly process and analyze large graph queries in a computing environment with small memory. The proposed scheme can be used to speed up in-memory-based processing in applications where relationships between objects are complex, such as the Internet of Things and social networks.
Funder
National Research Foundation of Korea
National Institute of Information and Communications Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献