In-Memory Caching for Enhancing Subgraph Accessibility

Author:

Bok Kyoungsoo,Yoo Seunghun,Choi Dojin,Lim Jongtae,Yoo JaesooORCID

Abstract

Graphs have been utilized in various fields because of the development of social media and mobile devices. Various studies have also been conducted on caching techniques to reduce input and output costs when processing a large amount of graph data. In this paper, we propose a two-level caching scheme that considers the past usage pattern of subgraphs and graph connectivity, which are features of graph topology. The proposed caching is divided into a used cache and a prefetched cache to manage previously used subgraphs and subgraphs that will be used in the future. When the memory is full, a strategy that replaces a subgraph inside the memory with a new subgraph is needed. Subgraphs in the used cache are managed by a time-to-live (TTL) value, and subgraphs with a low TTL value are targeted for replacement. Subgraphs in the prefetched cache are managed by the queue structure. Thus, first-in subgraphs are targeted for replacement as a priority. When a cache hit occurs in the prefetched cache, the subgraphs are migrated and managed in the used cache. As a result of the performance evaluation, the proposed scheme takes into account subgraph usage patterns and graph connectivity, thus improving cache hit rates and data access speeds compared to conventional techniques. The proposed scheme can quickly process and analyze large graph queries in a computing environment with small memory. The proposed scheme can be used to speed up in-memory-based processing in applications where relationships between objects are complex, such as the Internet of Things and social networks.

Funder

National Research Foundation of Korea

National Institute of Information and Communications Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3