Graph Stream Compression Scheme Based on Pattern Dictionary Using Provenance

Author:

Lee Hyeonbyeong1ORCID,Shin Bokyoung1,Choi Dojin2ORCID,Lim Jongtae1ORCID,Bok Kyoungsoo3ORCID,Yoo Jaesoo1ORCID

Affiliation:

1. Department of Information and Communication Engineering, Chungbuk National University, Chung-dae-ro 1, Seowon-gu, Cheongju 28644, Chungcheongbuk-do, Republic of Korea

2. Department of Computer Engineering, Changwon National University, Changwondaehak-ro 20, Uichang-gu, Changwon-si 51140, Gyeongsangnam-do, Republic of Korea

3. Department of Artificial Intelligence Convergence, Wonkwang University, Iksandae 460, Iksan 54538, Jeollabuk-do, Republic of Korea

Abstract

With recent advancements in network technology and the increasing popularity of the internet, the use of social network services and Internet of Things devices has flourished, leading to a continuous generation of large volumes of graph stream data, where changes, such as additions or deletions of vertices and edges, occur over time. Additionally, owing to the need for the efficient use of storage space and security requirements, graph stream data compression has become essential in various applications. Even though various studies on graph compression methods have been conducted, most of them do not fully reflect the dynamic characteristics of graph streams and the complexity of large graphs. In this paper, we propose a compression scheme using provenance data to efficiently process and analyze large graph stream data. It obtains provenance data by analyzing graph stream data and builds a pattern dictionary based on this to perform dictionary-based compression. By improving the existing dictionary-based graph compression methods, it enables more efficient dictionary management through tracking pattern changes and evaluating their importance using provenance. Furthermore, it considers the relationships among sub-patterns using an FP-tree and performs pattern dictionary management that updates pattern scores based on time. Our experiments show that the proposed scheme outperforms existing graph compression methods in key performance metrics, such as compression rate and processing time.

Funder

National Research Foundation of Korea

MSIT

Rural Development Administration

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3