New Non-Invasive Method for the Authentication of Apple Cultivars

Author:

Barberis Elettra,Amede Elia,Dondero FrancescoORCID,Marengo EmilioORCID,Manfredi Marcello

Abstract

Food authentication is very important to protect consumers, sellers, and producers from fraud. Although several methods have been developed using a wide range of analytical techniques, most of them require sample destruction and do not allow in situ sampling or analysis, nor reliable quantification of hundreds of molecules at the same time. To overcome these limitations, we have developed and validated a new noninvasive analytical workflow for food authentication. The method uses a functionalized strip to adsorb small molecules from the surface of the food product, followed by gas chromatography–mass spectrometry analysis of the desorbed analytes. We validated the method and applied it to the classification of five different apple varieties. Molecular concentrations obtained from the analysis of 44 apples were used to identify markers for apple cultivars or, in combination with machine learning techniques, to perform cultivar classification. The overall reproducibility of the method was very good, showing a good coefficient of variation for both targeted and untargeted analysis. The approach was able to correctly classify all samples. In addition, the method was also used to detect pesticides and the following molecules were found in almost all samples: chlorpyrifos-methyl, deltamethrin, and malathion. The proposed approach not only showed very good analytical performance, but also proved to be suitable for noninvasive food authentication and pesticide residue analysis.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3