3D Printing of Meat Following Supercritical Fluid Extraction

Author:

Aditya AbhilashORCID,Kim Namsoo PeterORCID

Abstract

With the spread of COVID-19, understanding the spread of food poisoning, managing food materials related to chronic diseases, food ingredients’ reliability, and non-face-to-face or untact delivery methods are rapidly emerging. A new field of meat research has been introduced for hygienic and healthy recipes to maintain freshness and control personalized ingredients using supercritical processes and 3D printing technology. Supercritical fluid extraction processes (SCF) and untact 3D printing technology will replace traditional meat freshness assessment based on color change according to the degree of oxidation of myoglobin in meat. SCF processes safely and quickly remove residual blood from meat and control fat and cholesterol that may be harmful to the human body. SCF-processed, high-viscosity meats are printed remotely through repeated IoT system variable experiments in WEB-CLOUD between UTEP in Texas, USA, and Korea University in Seoul, Korea. The SCF process in this study confirmed a weight reduction of 8.5% to 22.5%, depending on the temperature, pressure, and SCF process time. Under conditions of a tip size of 1.0 × 10−3 m, a shear rate of 200/s, and a maximum pressing force of 170 N, a 1000 cm3 SCF-processed meat was successfully 3D printed at the other site by transmitting G-code through web.

Funder

Korean Research Foundation's Brain Pool Fellowship Program

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3