Characterizing and Predicting Corrections in Spoken Dialogue Systems

Author:

Litman Diane1,Hirschberg Julia2,Swerts Marc3

Affiliation:

1. University of Pittsburgh

2. Columbia University

3. Tilburg University

Abstract

This article focuses on the analysis and prediction of corrections, defined as turns where a user tries to correct a prior error made by a spoken dialogue system. We describe our labeling procedure of various corrections types and statistical analyses of their features in a corpus collected from a train information spoken dialogue system. We then present results of machine-learning experiments designed to identify user corrections of speech recognition errors. We investigate the predictive power of features automatically computable from the prosody of the turn, the speech recognition process, experimental conditions, and the dialogue history. Our best-performing features reduce classification error from baselines of 25.70–28.99% to 15.72%.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. System and User Strategies to Repair Conversational Breakdowns of Spoken Dialogue Systems: A Scoping Review;ACM Conversational User Interfaces 2024;2024-07-08

2. A tag-based methodology for the detection of user repair strategies in task-oriented conversational agents;Computer Speech & Language;2024-06

3. Reimagining language;Linguistics in the Netherlands;2023-11-03

4. Towards a comprehensive repair framework for human-chatbot interaction;Proceedings of the 22nd ACM International Conference on Intelligent Virtual Agents;2022-09-06

5. User-Initiated Repetition-Based Recovery in Multi-Utterance Dialogue Systems;Interspeech 2021;2021-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3