Unsupervised Learning for the Segmentation of Small Crystalline Particles at the Atomic Level

Author:

Bárcena‐González Guillermo1ORCID,Hernández‐Robles Andrei2ORCID,Mayoral Álvaro34ORCID,Martinez Lidia5ORCID,Huttel Yves5ORCID,Galindo Pedro L.1ORCID,Ponce Arturo2ORCID

Affiliation:

1. Department of Computer Engineering, ESI University of Cádiz Puerto Real 11510 Spain

2. Department of Physics and Astronomy University of Texas at San Antonio San Antonio TX 78249 USA

3. Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC‐Universidad de Zaragoza Zaragoza 50009 Spain

4. Advanced Microscopy Laboratory (LMA) University of Zaragoza Zaragoza 50018 Spain

5. Instituto de Ciencia de Materiales de Madrid (ICMM‐CSIC) Madrid 28049 Spain

Abstract

AbstractElectron backscattering diffraction provides the analysis of crystalline phases at large scales (microns) while precession electron diffraction may be used to get 4D‐STEM data to elucidate structure at nanometric resolution. Both are limited by the probe size and also exhibit some difficulties for the generation of large datasets, given the inherent complexity of image acquisition. The latter appoints the application of advanced machine learning techniques, such as deep learning adapted for several tasks, including pattern matching, image segmentation, etc. This research aims to show how Gabor filters provide an appropriate feature extraction technique for electron microscopy images that could prevent the need of large volumes of data to train deep learning models. The work presented herein combines an algorithm based on Gabor filters for feature extraction and an unsupervised learning method to perform particle segmentation of polyhedral metallic nanoparticles and crystal orientation mapping at atomic scale. Experimental results have shown that Gabor filters are convenient for electron microscopy images analysis, that even a nonsupervised learning algorithm can provide remarkable results in crystal segmentation of individual nanoparticles. This approach enables its application to dynamic analysis of particle transformation recorded with aberration‐corrected microscopy, offering new possibilities of analysis at nanometric scale.

Funder

National Science Foundation

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3