Affiliation:
1. School of Microelectronics Southern University of Science and Technology Shenzhen 518055 China
2. Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong SAR 999077 China
3. Shanghai Jiao Tong University Shanghai 200240 China
Abstract
AbstractDoped‐metal oxide‐based memristors, with the potential for improved switching performance and capability for multi‐bit information storage, are attractive candidates in the implementation of artificial neural network (ANN) hardware systems. However, performance and process considerations such as switching behavior and complementary‐metal‐oxide‐semiconductor (CMOS) process compatibility remain a challenge. This study shows that amorphous Zr‐doped HfO2 (HZO) memristors fabricated via a co‐sputtering approach improve the switching performance by providing a controllable knob to modulate defects in the switching layer. At the same time, it satisfies the CMOS process compatibility requirements for industry adoption. HZO memristors with optimized stoichiometry exhibit 30% reduced switching voltages and 50% faster switching as compared to control HfO2 memristors. Concurrently, this study shows that high linearity analog states tuning is achievable via a programming scheme that utilizes voltage pulses with increasing amplitudes. This study further shows via simulation evaluation that HZO memristors implemented in a self‐organizing‐map (SOM) network for Fashion MNIST database classification, achieve an accuracy of 92% with short training cycles. The results thus pave a potential pathway for further development of CMOS process compatible HZO memristors for use in future storage and computing applications.
Funder
National Natural Science Foundation of China
Shenzhen Fundamental Research Program
Subject
Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献