Self‐Healing Magnetic Field‐Assisted Threshold Switching Device Utilizing Dual Field‐Driven Filamentary Physics

Author:

Chu Daeyoung12ORCID,Han Donghwan12ORCID,Kang Sanghyun3ORCID,Kim Gwon3ORCID,Choi Yejoo3ORCID,Jang Eungyo1ORCID,Shin Changhwan1

Affiliation:

1. School of Electrical Engineering Korea University Seoul 02841 Republic of Korea

2. Semiconductor R&D Center Samsung Electronics Hwaseong 18448 Republic of Korea

3. Department of Electrical and Computer Engineering Sungkyunkwan University Suwon 16419 Republic of Korea

Abstract

AbstractAdvanced filamentary devices are crucial for developing low‐power devices to implement high‐speed logic and neuromorphic devices. Among these, HfO2‐based filamentary devices have attracted attention as viable options due to their threshold‐switching characteristics and compatibility with complementary metal‐oxide‐semiconductor (CMOS) technology. However, the unpredictability of conventional filament formation/rupture driven by an electric field challenges consistency and reliability. A paradigm shift from conventional stochastic electric field‐driven ion migration to controllable ion‐based transportation is essential to devise functional low‐power devices capable of controlling the filament process. This work introduces a magnetic field‐assisted threshold switching (MA‐TS) device, which integrates a neodymium magnet and a nickel (Ni) barrier layer to enable controlled dual field‐driven ion transportation. The dual field‐driven process combining the conventional vertical electric field‐driven ion migration with lateral magnetic field‐driven ion transportation, reveals a distinctive aspect of ion movement. The MA‐TS device achieves superior performances characterized by an ultra‐low threshold voltage (≈0 V), minimized leakage current in the off‐state, a variation‐immune hysteresis‐free characteristic, enhanced yield, and revival‐ability (i.e., self‐healing) after a failed TS operation. By overcoming the limitations of conventional filamentary devices, the MA‐TS device opens up a promising avenue for efficient and stable low‐power applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3