Device‐to‐Materials Pathway for Electron Traps Detection in Amorphous GeSe‐Based Selectors

Author:

Slassi Amine1,Medondjio Linda‐Sheila2,Padovani Andrea3ORCID,Tavanti Francesco1,He Xu2,Clima Sergiu4ORCID,Garbin Daniele4,Kaczer Ben4ORCID,Larcher Luca5ORCID,Ordejón Pablo2ORCID,Calzolari Arrigo1ORCID

Affiliation:

1. CNR‐NANO Istituto Nanoscienze Centro S3 Modena I‐41125 Italy

2. Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and BIST Campus Bellaterra Barcelona 8193 Spain

3. University of Modena and Reggio Emilia DIEF Via P. Vivarelli, 10 Modena MO 41125 Italy

4. imec Kapeldreef 75 Leuven B‐3001 Belgium

5. AMAT – Applied Materials Italia Via Meuccio Ruini 74L Reggio Emilia Italy

Abstract

AbstractThe choice of the ideal material employed in selector devices is a tough task both from the theoretical and experimental side, especially due to the lack of a synergistic approach between techniques able to correlate specific material properties with device characteristics. Using a material‐to‐device multiscale technique, a reliable protocol for an efficient characterization of the active traps in amorphous GeSe chalcogenide is proposed. The resulting trap maps trace back the specific features of materials responsible for the measured findings, and connect them to an atomistic description of the sample. The metrological approach can be straightforwardly extended to other materials and devices, which is very beneficial for an efficient material‐device codesign and the optimization of novel technologies.

Funder

European Commission

Generalitat de Catalunya

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3