Picosecond Time‐Scale Resistive Switching Monitored in Real‐Time

Author:

Csontos Miklós1ORCID,Horst Yannik1,Olalla Nadia Jimenez1,Koch Ueli1,Shorubalko Ivan2ORCID,Halbritter András34,Leuthold Juerg1ORCID

Affiliation:

1. Institute of Electromagnetic Fields ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland

2. Transport at Nanoscale Interfaces Laboratory Empa, Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 Dübendorf 8600 Switzerland

3. Department of Physics Institute of Physics Budapest University of Technology and Economics Műegyetem rkp. 3 Budapest H‐1111 Hungary

4. ELKH‐BME Condensed Matter Research Group Műegyetem rkp. 3 Budapest H‐1111 Hungary

Abstract

AbstractThe resistance state of filamentary memristors can be tuned by relocating only a few atoms at interatomic distances in the active region of a conducting filament. Thereby the technology holds promise not only in its ultimate downscaling potential and energy efficiency but also in unprecedented speed. Yet, the breakthrough in high‐frequency applications still requires the clarification of the dominant mechanisms and inherent limitations of ultra‐fast resistive switching. Here bipolar, multilevel resistive switchings are investigated in tantalum pentoxide based memristors with picosecond time resolution. Cyclic resistive switching operation due to 20 ps long voltage pulses of alternating polarity are experimentally demonstrated. The analysis of the real‐time response of the memristor reveals that the set switching can take place at the picosecond time‐scale where it is only compromised by the bandwidth limitations of the experimental setup. In contrast, the completion of the reset transitions significantly exceeds the duration of the ultra‐short voltage bias, demonstrating the dominant role of thermal diffusion and underlining the importance of dedicated thermal engineering for future high‐frequency memristor circuit applications.

Funder

Werner Siemens-Stiftung

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3