Asymmetric Electrode Work Function Customization via Top Electrode Replacement in Ferroelectric and Field‐Induced Ferroelectric Hafnium Zirconium Oxide Thin Films

Author:

Fields Shelby S.1ORCID,Jaszewski Samantha T.1,Lenox Megan K.1,Ihlefeld Jon F.2

Affiliation:

1. Department of Materials Science and Engineering University of Virginia Charlottesville VA 22904 USA

2. Department of Materials Science and Engineering Department of Electrical and Computer Engineering University of Virginia Charlottesville VA 22904 USA

Abstract

AbstractNon‐volatile memory device structures such as ferroelectric random‐access memory and ferroelectric tunnel junctions employ switchable spontaneous polarization to hold binary states. These devices can potentially benefit from the imposition of spontaneous internal biases and their resulting effect on the polarization properties of the ferroelectric (or field‐induced ferroelectric/antiferroelectric) layer. While HfO2‐based thin films are ideal candidates for implementation into these devices due to their scalability and silicon compatibility, the phase purity of these oxides is sensitive to the selection of electrode material, preventing incorporation of asymmetric electrode layers into such structures. Within this work, electrode replacement following post‐metallization anneal processing is introduced as a route to achieve ferroelectric and field‐induced ferroelectric HfxZr1−xO2 (HZO) thin films with electrode‐independent phase constitutions. The effects of this process and the corresponding internal biases imposed across the HZO layers due to asymmetric work functions are investigated. It is shown that internal biases vary in magnitude in accordance with prediction based on the work functions of the replaced electrode layers and affect remanent polarization magnitudes. Accordingly, electrode replacement presents a processing route that can readily produce HZO films with spontaneous internal biases and electrode‐independent phase constitutions, facilitating implementation of these ferroelectrics into the next generation device structures.

Funder

U.S. Department of Energy

Office of Science

Basic Energy Sciences

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3