Fluorite-structured antiferroelectric hafnium-zirconium oxide for emerging nonvolatile memory and neuromorphic-computing applications

Author:

Xu Kangli1ORCID,Wang Tianyu2ORCID,Yu Jiajie1,Liu Yongkai1ORCID,Li Zhenhai1,Lu Chen1ORCID,Song Jieru1ORCID,Meng Jialin1,Zhu Hao1ORCID,Sun Qingqing1,Zhang David Wei1,Chen Lin1ORCID

Affiliation:

1. School of Microelectronics, State Key Laboratory of Integrated Chips and Systems, Fudan University 1 , Shanghai 200433, China

2. School of Integrated Circuits, Shandong University 2 , Jinan 250100, China

Abstract

The rapid progress of the internet of things, cloud computing, and artificial intelligence has increased demand for high-performance computing. This demand has led to a focused exploration of novel nonvolatile memory (NVM) and brain-inspired neuromorphic-computing electronics, with research efforts directed at identifying materials compatible with complementary metal-oxide-semiconductor technology. Exploring fluorite-structured hafnium-zirconium oxide (HZO) mixed oxides has revealed promising ferroelectric (FE) and memristor characteristics, suggesting potential applications in emerging technologies. However, certain intrinsic properties of HZO-based FEs, such as high coercive fields (Ec) and polarization metastability, may pose challenges for commercial viability. Recent investigations of fluorite-structured HZO-based antiferroelectrics (AFEs) have highlighted their advantages, including lower energetic barriers, higher switching speeds, and a uniform phase distribution. These inherent benefits position fluorite-structured HZO-based AFEs as potential candidates within the NVM landscape. Furthermore, the accumulated polarization and spontaneous depolarization characteristics of fluorite-structured HZO-based AFEs make them worthy of potential integration into neuromorphic-computing because they resemble certain aspects of neuron behavior. Despite these positive aspects, a more thorough exploration and consideration are needed to address existing challenges. This review aims to present fluorite-structured HZO-based AFE materials and highlight the current challenges, possible applications, and future opportunities and can act as an update for recent developments in these intriguing materials and provide guidance for future researchers in the optimization and design of HZO-based AFE materials and devices for emerging NVM and neuromorphic-computing applications.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Shanghai Sailing Program

China Postdoctoral Science Foundation

Qilu Young Scholar Program of Shandong University

Jiashan Fudan Institute

National Integrated Circuit Innovation Center

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3