Direct Measurements of Anisotropic Thermal Transport in γ‐InSe Nanolayers via Cross‐Sectional Scanning Thermal Microscopy

Author:

Gonzalez‐Munoz Sergio1ORCID,Agarwal Khushboo1ORCID,Castanon Eli G.2ORCID,Kudrynskyi Zakhar R.3ORCID,Kovalyuk Zakhar D.4ORCID,Spièce Jean5ORCID,Kazakova Olga6ORCID,Patanè Amalia3,Kolosov Oleg V.1ORCID

Affiliation:

1. Department of Physics Lancaster University Lancaster LA1 4YB UK

2. The University of Manchester, National Graphene Institute Booth St E Manchester M13 9PL UK

3. School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD UK

4. Institute for Problems of Materials Science National Academy of Sciences of Ukraine Chernivtsi Branch Chernivtsi 58001 Ukraine

5. Institute of Condensed Matter and Nanosciences Nanoscopic Physics Université Catholique de Louvain Louvain‐la‐Neuve 1348 Belgium

6. National Physical Laboratory, Quantum Materials and Sensors Hampton Road Teddington TW11 0LW UK

Abstract

AbstractVan der Waals (vdW) atomically thin materials and their heterostructures offer a versatile platform for the management of nanoscale heat transport and the design of novel thermoelectrics. These require the measurement of highly anisotropic heat transport in vdW‐based nanolayers, a major challenge for nanostructured materials and devices. In the present study, a novel effective method of cross‐sectional scanning thermal microscopy was used to map and quantify the anisotropic heat transport in nanoscale thick layers of vdW materials and the material‐substrate interfaces. This technique measures the heat conducted into a vdW crystal via the nanoscale apex of a heat‐sensitive probe. The crystal is nano‐polished via Ar ion beams generating an oblique nearly atomically flat surface. By measuring the thermal conductance variation as a function of increasing layer thickness, the transition between the cross‐plane and in‐plane heat transport (defined by heat conductivity anisotropy) is acquired. By using an analytical model validated by finite element simulations, anisotropic thermal transport in a gamma indium selenide crystal nano‐thin flake on a Si substrate was studied, obtaining results corresponding to anomalously low anisotropic thermal conductivities of kxy = 2.16 Wm−1 K−1 in‐plane and kz = 0.89 Wm−1 K−1 cross‐plane confirming its potential for thermoelectric applications.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3