STEM in situ thermal wave observations for investigating thermal diffusivity in nanoscale materials and devices

Author:

Nguyen Hieu Duy1ORCID,Yamada Isamu2,Nishimura Toshiyuki3ORCID,Pang Hong4ORCID,Cho Hyunyong1,Tang Dai-Ming4ORCID,Kikkawa Jun1ORCID,Mitome Masanori5ORCID,Golberg Dmitri467ORCID,Kimoto Koji1ORCID,Mori Takao48ORCID,Kawamoto Naoyuki1ORCID

Affiliation:

1. Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

2. Yamada R&D Support Enterprise, 2-8-3 Minamidai, Ishioka, Ibaraki 315-0035, Japan.

3. Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.

4. Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

5. Research Network and Facility Services Division, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.

6. Centre for Materials Science, Queensland University of Technology, 2 George, Brisbane, QLD 4000, Australia.

7. School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, 2 George, Brisbane, QLD 4000, Australia.

8. Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8671, Japan.

Abstract

Practical techniques to identify heat routes at the nanoscale are required for the thermal control of microelectronic, thermoelectric, and photonic devices. Nanoscale thermometry using various approaches has been extensively investigated, yet a reliable method has not been finalized. We developed an original technique using thermal waves induced by a pulsed convergent electron beam in a scanning transmission electron microscopy (STEM) mode at room temperature. By quantifying the relative phase delay at each irradiated position, we demonstrate the heat transport within various samples with a spatial resolution of ~10 nm and a temperature resolution of 0.01 K. Phonon-surface scatterings were quantitatively confirmed due to the suppression of thermal diffusivity. The phonon-grain boundary scatterings and ballistic phonon transport near the pulsed convergent electron beam were also visualized.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3