2D materials and van der Waals heterostructures

Author:

Novoselov K. S.12,Mishchenko A.12,Carvalho A.3,Castro Neto A. H.3

Affiliation:

1. School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.

2. National Graphene Institute, University of Manchester, Manchester M13 9PL, UK.

3. Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 2 Science Drive 3, Singapore 117542.

Abstract

BACKGROUND Materials by design is an appealing idea that is very hard to realize in practice. Combining the best of different ingredients in one ultimate material is a task for which we currently have no general solution. However, we do have some successful examples to draw upon: Composite materials and III-V heterostructures have revolutionized many aspects of our lives. Still, we need a general strategy to solve the problem of mixing and matching crystals with different properties, creating combinations with predetermined attributes and functionalities. ADVANCES Two-dimensional (2D) materials offer a platform that allows creation of heterostructures with a variety of properties. One-atom-thick crystals now comprise a large family of these materials, collectively covering a very broad range of properties. The first material to be included was graphene, a zero-overlap semimetal. The family of 2D crystals has grown to includes metals (e.g., NbSe 2 ), semiconductors (e.g., MoS 2 ), and insulators [e.g., hexagonal boron nitride (hBN)]. Many of these materials are stable at ambient conditions, and we have come up with strategies for handling those that are not. Surprisingly, the properties of such 2D materials are often very different from those of their 3D counterparts. Furthermore, even the study of familiar phenomena (like superconductivity or ferromagnetism) in the 2D case, where there is no long-range order, raises many thought-provoking questions. A plethora of opportunities appear when we start to combine several 2D crystals in one vertical stack. Held together by van der Waals forces (the same forces that hold layered materials together), such heterostructures allow a far greater number of combinations than any traditional growth method. As the family of 2D crystals is expanding day by day, so too is the complexity of the heterostructures that could be created with atomic precision. When stacking different crystals together, the synergetic effects become very important. In the first-order approximation, charge redistribution might occur between the neighboring (and even more distant) crystals in the stack. Neighboring crystals can also induce structural changes in each other. Furthermore, such changes can be controlled by adjusting the relative orientation between the individual elements. Such heterostructures have already led to the observation of numerous exciting physical phenomena. Thus, spectrum reconstruction in graphene interacting with hBN allowed several groups to study the Hofstadter butterfly effect and topological currents in such a system. The possibility of positioning crystals in very close (but controlled) proximity to one another allows for the study of tunneling and drag effects. The use of semiconducting monolayers leads to the creation of optically active heterostructures. The extended range of functionalities of such heterostructures yields a range of possible applications. Now the highest-mobility graphene transistors are achieved by encapsulating graphene with hBN. Photovoltaic and light-emitting devices have been demonstrated by combining optically active semiconducting layers and graphene as transparent electrodes. OUTLOOK Currently, most 2D heterostructures are composed by direct stacking of individual monolayer flakes of different materials. Although this method allows ultimate flexibility, it is slow and cumbersome. Thus, techniques involving transfer of large-area crystals grown by chemical vapor deposition (CVD), direct growth of heterostructures by CVD or physical epitaxy, or one-step growth in solution are being developed. Currently, we are at the same level as we were with graphene 10 years ago: plenty of interesting science and unclear prospects for mass production. Given the fast progress of graphene technology over the past few years, we can expect similar advances in the production of the heterostructures, making the science and applications more achievable. Production of van der Waals heterostructures. Owing to a large number of 2D crystals available today, many functional van der Waals heterostructures can be created. What started with mechanically assembled stacks ( top ) has now evolved to large-scale growth by CVD or physical epitaxy ( bottom ).

Funder

European Union FP7

European Research Council Synergy Grant

Hetero2D

Engineering and Physical Sciences Research Council (EPSRC)

Royal Society

U.S. Army Research Office

U.S. Navy Research Office

U.S. Airforce Research Office

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 5510 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3