Ti─O─C Bonding at 2D Heterointerfaces of 3D Composites for Fast Sodium Ion Storage at High Mass Loading Level

Author:

Yu Diwen1,Guo Kaixuan1,Hou Fengxiao1,Zhang Yangang1,Ye Xiaolin1,Zhang Yaohui1,Ji Puguang2,Khalilov Umedjon3,Wang Gongkai2,Zhang Xin2,Wang Kai1,Song Yuexian1,Zhong Xiaobin1,Sun Hongtao4,Zhu Jian5,Liang Junfei1ORCID,Wang Hua6

Affiliation:

1. School of Energy and Power Engineering North University of China Taiyuan 030051 China

2. Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology School of Material Science and Engineering Hebei University of Technology Tianjin 300130 China

3. Arifov Institute of Ion‐Plasma and Laser Technologies Academy of Sciences of the Republic of Uzbekistan Tashkent 100077 Uzbekistan

4. The Harold and Inge Marcus Department of Industrial Engineering The Pennsylvania State University State College University Park PA 16802 USA

5. College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China

6. School of Chemistry Beihang University Beijing 100191 China

Abstract

Abstract3D composite electrodes have shown extraordinary promise as high mass loading electrode materials for sodium ion batteries (SIBs). However, they usually show poor rate performance due to the sluggish Na+ kinetics at the heterointerfaces of the composites. Here, a 3D MXene‐reduced holey graphene oxide (MXene‐RHGO) composite electrode with Ti─O─C bonding at 2D heterointerfaces of MXene and RHGO is developed. Density functional theory (DFT) calculations reveal the built‐in electric fields (BIEFs) are enhanced by the formation of bridged interfacial Ti─O─C bonding, that lead to not only faster diffusion of Na+ at the heterointerfaces but also faster adsorption and migration of Na+ on the MXene surfaces. As a result, the 3D composite electrodes show impressive properties for fast Na+ storage. Under high current density of 10 mA cm−2, the 3D MXene‐RHGO composite electrodes with high mass loading of 10 mg cm−2 achieve a strikingly high and stable areal capacity of 3 mAh cm−2, which is same as commercial LIBs and greatly exceeds that of most reported SIBs electrode materials. The work shows that rationally designed bonding at the heterointerfaces represents an effective strategy for promoting high mass loading 3D composites electrode materials forward toward practical SIBs applications.

Funder

National Natural Science Foundation of China

North University of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3