Promoting Reaction Kinetics and Boosting Sodium Storage Capability via Constructing Stable Heterostructures for Sodium‐Ion Batteries

Author:

Ma Chunrong1,Tang Xiao2,Ben Haoxi1,Jiang Wei1,Shao Xinyu1,Wang Guoxiu3,Sun Bing3ORCID

Affiliation:

1. College of Textiles & Clothing Key Laboratory of Bio‐Fibers and Eco‐Textiles Qingdao University Qingdao Shandong 266071 China

2. School of Chemistry and Chemical Engineering Qingdao University Qingdao Shandong 266071 China

3. Centre for Clean Energy Technology School of Mathematical and Physical Sciences Faculty of Science University of Technology Sydney Ultimo NSW 2007 Australia

Abstract

AbstractConstructing heterostructures containing multiple active components is proven to be an efficient strategy for enhancing the sodium storage capability of anode materials in sodium‐ion batteries (SIBs). However, performance enhancement is often attributed to the unclear synergistic effects among the active components. A comprehensive understanding of the reaction mechanisms on the interfaces at the atomic level remains elusive. Herein, the carbon‐coated Fe3Se4/CoSe (Fe3Se4/CoSe‐C) anode material as a model featuring atomic‐scale contact interfaces is synthesized. This unique heterogeneous architecture offers an adjustable electronic structure, which facilitates rapid reaction kinetics and enhances structural integrity. In situ microscopic and ex situ spectral characterization techniques, along with theoretical simulations, confirm that the heterointerface with strong electric fields promotes Na+ ion migration. Based on solid‐state nuclear magnetic resonance (NMR) analysis, an interface charge storage mechanism is revealed, resulting in the enhanced specific capacity of the anode materials. When employed as an anode in SIBs, the Fe3Se4/CoSe‐C electrode demonstrates excellent rate capabilities (218 mAh g−1 at 7 A g−1) and prolonged cycling stability (258 mAh g−1 at 5 A g−1 after 1000 cycles). This work highlights the significance of heterointerface engineering in electrode material design for rechargeable batteries.

Funder

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3