Long‐Cycle‐Life Cathode Materials for  Sodium‐Ion Batteries toward Large‐Scale Energy Storage Systems

Author:

Zhang Hang12,Gao Yun1,Liu Xiaohao1,Zhou Lifeng2,Li Jiayang2,Xiao Yao1,Peng Jian2,Wang Jiazhao12,Chou Shu‐Lei1ORCID

Affiliation:

1. Institute for Carbon Neutralization College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 P. R. China

2. Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Innovation Campus, Squires Way North Wollongong NSW 2522 Australia

Abstract

AbstractThe development of large‐scale energy storage systems (ESSs) aimed at application in renewable electricity sources and in smart grids is expected to address energy shortage and environmental issues. Sodium‐ion batteries (SIBs) exhibit remarkable potential for large‐scale ESSs because of the high richness and accessibility of sodium reserves. Using low‐cost and abundant elements in cathodes with long cycling stability is preferable for lowering expenses on cathodes. Many investigated cathodes for SIBs are dogged by structural and morphology changes, unstable interphases between the cathode and the electrolyte, and air sensitivity, causing unsatisfactory cycling performance. Therefore, understanding the mechanism of capacity degeneration in depth and developing precise solutions are critical for designing low‐cost cathodes that are highly stable under cycling. Herein, recent progress in long‐cycle‐life and low‐cost cathodes for SIBs is focused on, and a comprehensive discussion of the key points in SIBs toward large‐scale applications is provided. The roots of the unstable cycling performance of low‐cost cathodes are discussed. Also, effective strategies are summarized from the recent progress on long‐cycle‐life and low‐cost cathodes. This review is expected to encourage deeper investigation of long‐lifespan cathodes for SIBs, particularly for potential large‐scale industrialization.

Funder

National Natural Science Foundation of China

Ministry of Education

Australian Research Council

China Scholarship Council

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3