Cuticular waxes affect fruit surface color in blueberries

Author:

Yan Yifan1ORCID,Dossett Michael2ORCID,Castellarin Simone D.1ORCID

Affiliation:

1. Wine Research Centre, Faculty of Land and Food Systems The University of British Columbia 2205 East Mall Vancouver BC V6T 1Z4 Canada

2. BC Berry Cultivar Development Inc Abbotsford BC Canada

Abstract

Societal Impact StatementIn blueberry, fruit color is one of the most important quality traits affecting consumers' choices. Both pigments and waxes impact fruit color; however, their roles have not been clearly elucidated. Here, the contributions of waxes and anthocyanins to fruit color are characterized. A higher content of β‐diketones—the second largest wax group in blueberries—determines a lighter fruit color; hence revealing that, at harvest, waxes contribute more than anthocyanins in determining variations in fruit color among blueberry varieties.Summary Fruit color is one of the major quality traits determining the marketability of fruits by affecting consumers' choices. In blueberries, although fruit surface color is mainly determined by pigments (e.g., anthocyanins), cuticular waxes also play a role in modulating the surface color, and a lighter color given by a dense wax bloom is normally preferred by consumers. This study investigated the content and composition of cuticular waxes and their roles in modulating fruit surface color in 12 (seven northern highbush, three southern highbush, and two hybrids) blueberry genotypes at harvest (H1, representing the first commercial pick, and H2, representing the second commercial pick). The ultrastructural morphology of cuticular waxes was analyzed in four selected genotypes by scanning electron microscopy. The level and profile of anthocyanins and their contributions to the color were also assessed. Total cuticular wax content ranged from 27.7 to 95.8 μg cm−2 among genotypes at H1 and decreased by an average of 23.9% from H1 to H2. Triterpenoids (62.5% of the total cuticular waxes on average) and β‐diketones (22.9% on average) were the first and second largest wax groups in all genotypes, respectively. β‐Diketones were previously proven to affect leaf surface color in wheat; in this study, their content strongly correlated with the lightness of the blueberry surface. Scanning electron microscopy revealed distinct wax morphologies among genotypes. No significant relationships were found between total or individual anthocyanin concentrations and fruit surface color. Our results suggest that, at harvest, variation in the fruit surface color among blueberry genotypes is more closely related to the content and composition of cuticular waxes than the level and profile of anthocyanins, with β‐diketones being particularly important. This study provides new insights for blueberry breeding programs aiming to improve the surface color in order to meet the market demand.

Publisher

Wiley

Subject

Horticulture,Plant Science,Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3