Unsupervised machine learning for detecting soil layer boundaries from cone penetration test data

Author:

Hudson Kenneth S.1ORCID,Ulmer Kristin J.2ORCID,Zimmaro Paolo13ORCID,Kramer Steven L.4,Stewart Jonathan P.1,Brandenberg Scott J.1

Affiliation:

1. Civil and Environmental Engineering Department University of California Los Angeles USA

2. Southwest Research Institute San Antonio USA

3. Environmental Engineering Department University of Calabria Italy

4. Civil and Environmental Engineering Department University of Washington Seattle USA

Abstract

AbstractCone penetration test (CPT) data contains detailed stratigraphic information that is useful in a wide variety of applications. Separating a CPT profile into discrete layers is an important part of many analyses such as critical layer selection in liquefaction triggering analysis, effective stress seismic ground response analysis, analysis of pile shaft and tip resistance, and soil‐pile interaction analysis. The discretization of the profile into layers is often done manually, relying on the judgment of the analyst. This manual approach is cumbersome for datasets that include large numbers of CPT profiles (such as the Next Generation Liquefaction [NGL] database and the New Zealand Geotechnical Database) and it may not be consistent or repeatable because different analysts may discretize a given CPT log in different ways. To overcome these difficulties, we present an approach to automatically divide a CPT profile into discrete layers. Automated layer detection is performed using an unsupervised machine learning technique called agglomerative clustering in combination with two cost functions to identify an optimal number of layers. The algorithm is illustrated using CPT profiles from the NGL database, where the approach is being used in the development of liquefaction triggering and manifestation models. Although the algorithm shows promise for replicating our judgment regarding layering, we recommend visual review of the layering produced by the algorithm to check for reasonableness given the site geology and intended use of the CPT data.

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3