A systematic review and meta-analysis of artificial neural network, machine learning, deep learning, and ensemble learning approaches in field of geotechnical engineering

Author:

Yaghoubi Elaheh,Yaghoubi Elnaz,Khamees Ahmed,Vakili Amir HosseinORCID

Abstract

AbstractArtificial neural networks (ANN), machine learning (ML), deep learning (DL), and ensemble learning (EL) are four outstanding approaches that enable algorithms to extract information from data and make predictions or decisions autonomously without the need for direct instructions. ANN, ML, DL, and EL models have found extensive application in predicting geotechnical and geoenvironmental parameters. This research aims to provide a comprehensive assessment of the applications of ANN, ML, DL, and EL in addressing forecasting within the field related to geotechnical engineering, including soil mechanics, foundation engineering, rock mechanics, environmental geotechnics, and transportation geotechnics. Previous studies have not collectively examined all four algorithms—ANN, ML, DL, and EL—and have not explored their advantages and disadvantages in the field of geotechnical engineering. This research aims to categorize and address this gap in the existing literature systematically. An extensive dataset of relevant research studies was gathered from the Web of Science and subjected to an analysis based on their approach, primary focus and objectives, year of publication, geographical distribution, and results. Additionally, this study included a co-occurrence keyword analysis that covered ANN, ML, DL, and EL techniques, systematic reviews, geotechnical engineering, and review articles that the data, sourced from the Scopus database through the Elsevier Journal, were then visualized using VOS Viewer for further examination. The results demonstrated that ANN is widely utilized despite the proven potential of ML, DL, and EL methods in geotechnical engineering due to the need for real-world laboratory data that civil and geotechnical engineers often encounter. However, when it comes to predicting behavior in geotechnical scenarios, EL techniques outperform all three other methods. Additionally, the techniques discussed here assist geotechnical engineering in understanding the benefits and disadvantages of ANN, ML, DL, and EL within the geo techniques area. This understanding enables geotechnical practitioners to select the most suitable techniques for creating a certainty and resilient ecosystem.

Funder

Karabuk University

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3